欢迎来到阅能服务平台官网!

全部文章
(转载自公众号地热加) 人类活动排放的二氧化碳等温室气体导致全球变暖,进而造成全球非极地地区冰川消退、海平面上升、海水温度上升、海洋生态环境加剧恶化、全球极端气候事件频发……“气候变化让人类站在事关存亡的十字路口。” 为了减少二氧化碳排放,全球开始积极应对。 ·1988年,世界气象组织(WMO)和联合国环境规划署(UNEP)共同创立了政府间气候变化专门委员会(IPCC)。 ·2005年,IPCC发布《CCUS特别报道》指出二氧化碳捕获、封存与利用(Carbon Dioxide Capture,Utilization and Storage,简称CCUS)技术将对控制大气中二氧化碳浓度具有重要意义。 ·2018年,IPCC发布《全球升温1.5℃特别报告》之后,CCUS技术关注度再次上升。 ·目前,CCUS技术已经具有丰富的研究成果。 为了加强资源利用率并减少地质封存成本,二氧化碳地质利用的方式受到更多青睐。例如,二氧化碳可以作为一种地热工作流体用于地热开发项目,与水基系统相比,二氧化碳的热力学特性更佳。二氧化碳羽流地热系统(CPGS,CO₂-Plume Geothermal System)的原理是以二氧化碳传热,以高渗透性天然含水层为目标热储层,如下图所示。 利用CPGS提取地热能,能够在开采地热能的同时,实现二氧化碳的地质封存。 图中:EOR为二氧化碳驱油计划(Enhanced Oil Recovery),2026年12月31日结束,目前已被EHRP提高油气采收率计划(Enhanced Hydrocarbon Recovery Program)取代,该计划已在2017年1月1日生效。 研究和示范项目 二氧化碳作为地热工作流体传导热能的研究,在多个地区开展了相关项目: ECO₂GTM项目 ECO₂GTM是GreenFire Energy的一个项目,已与美国能源部(DOE,Department of Energy)、劳伦斯伯克利国家实验室(LBNL,Lawrence Berkeley National Laboratory)、劳伦斯利物莫国家实验室(LLNL,Lawrence Livermore National Laboratory)、西北太平洋国家实验室(PNNL,Pacific Northwest National Laboratory)达成了研究合作伙伴关系。ECO₂GTM利用二氧化碳让表现不佳的热液井进行地热发电。示范项目位于加利福尼亚的CosoKGRA,预计将进一步开发20~1 000 MW的地热发电厂商业项目。 In Salah CCS项目 In Salah CCS是2004—2011年间投入运营的陆上二氧化碳捕集和封存项目。该项目是BP、Sonatrach和Statoil的合作项目,旨在证明二氧化碳地质封存是具有成本效益的,并通过短期监测提供长期保证。此外,该项目旨在向利益相关者展示二氧化碳的地质封存是可行的温室气体减排方案。在注入过程中,从不同气田提取二氧化碳,用乙醇胺处理、压缩、然后运输和封存在Krechba油田(阿尔及利亚),深度约1.9 km。采用多种地球物理和地球化学方法监测注入,如4D地震、微地震、地下水监测、卫星InSAR数据等。除这些方法外,还开发了收集和评估数据的程序,为监测、建模和验证(MMV,Monitoring,Modelling and Verification)方法提供思路。 二氧化碳 ReMoVe项目 Krechba油田总共封存了380万吨二氧化碳。在挪威巴伦支海(Barents Sea)的Snohvit气田,挪威国家石油公司于2008年开始重新注入需要排放的二氧化碳。天然气被泵入位于Melkoya(陆上)的碳捕集厂,用胺将二氧化碳从气体流中分离出来。然后,高浓度二氧化碳流通过管道输送回Snohvit油田(海上),并注入2.6 km深的砂岩地层中。帝国理工学院(Imperial College)与挪威国家石油公司(Statoil)合作,作为二氧化碳ReMoVe项目(第6个框架计划的资助项目)的一部分,利用4D地震勘探分析了短期注入压力动态。到2012年8月,总共注入1 600公吨二氧化碳。 GEOREACTOR项目 GEOREACTOR项目的二氧化碳创新技术开发是由中央电力工业研究所(CentralRe-search Institute of the Electric Power Industry)和地球创新技术研究所(Research Institute of Innovative Technology for the Earth)合作完成的。该研发项目由日本经济产业部(Ministry of Economy,Trade & Industry of Japan)资助。2007 年,Ogachi HDR项目(日本)进行了二氧化碳封存的现场试验。现场研究在700~1 100 m的深度注入1 %的溶解二氧化碳,温度为200 ℃。注入物中还含有示踪剂,用于通过与岩石的相互作用研究二氧化碳作为碳酸盐的矿化作用。实验结果证明,在几天内二氧化碳被部分封存在方解石沉淀中。 来源:https://doi.org/10.1016/j.rser.2019.109331《国外科技信息》2021-3期(总第127期)—二氧化碳捕集、利用与封存技术 (转载自公众号地热加)

(转载自公众号艾牛科普君) 地球是人类的家园,科学家通过测定放射性核素的衰变情况,发现地球大约有45.7亿岁了。虽然经过了45.7亿个年头,地球依旧保持着旺盛的生命力。 地球表面70%被液态水覆盖,剥开水圈,地球外面这层薄如蛋壳的岩石质外壳,被称为地壳。火山爆发时喷出的熔岩就来自地壳之下,温度高达900~1400摄氏度。越深入地球内部,温度越高。科学家综合各方面的数据,发现地核的温度大约在4000~6000摄氏度左右。要知道,太阳表面的温度也才5500摄氏度左右。 地球诞生了这么久,经过长时间的冷却,为什么内部温度还这么高? 地球是一个岩石行星,半径高达6371千米。要想了解地球内部的情况,确实很困难,但并非没有办法。 前苏联科学家曾经往地下钻了一个12263米的深孔,这就是著名的科拉超深钻孔。该钻孔位于毗邻挪威的科拉半岛,纯粹是为了科研目的而进行的钻探任务。目前世界上最深的钻探深度是位于俄罗斯库页岛的一处油井,钻探深度达12345米。 地球上时常有火山喷发,从地球深处流出的熔岩也能让我们了解地球内部的部分情况。除了火山喷发,地球上每天都会发生大大小小的地震,通过研究地震也能了解地球内部的情况。 CT是医院中常见的一项检查,CT的中文名叫做计算机断层扫描。利用x光扫描人体,由于人体不同组织器官对x光的吸收和透过程度不同,于是就可以建立人体的内部结构图像,同时也能发现身体中哪些部位出现病变。发生地震时,会产生地震波,利用地震波代替x光,地震波遇到不同地层结构时传播状况会发生变化,这样科学家们就能了解到地球内部的情况,这就好比给地球做CT。 地震波是一种机械波,机械波可以分为横波和纵波,它们在不同材质中的传播特性不同。比如,地震波在传播过程中,横波就不能穿透外地核。再根据其它实验数据,就能大致摸清地球内部的情况,包括地层结构,及不同圈层的密度、压力、物质种类和物相等数据。 通过长期的研究,科学家给地球分了三个同心球层,从内到外依次为:地壳、地幔和地核。地壳与地幔之间由莫霍面分开,地幔与地核之间由古登堡面分开,这些都是根据地震波的传播情况来划分的。地壳很薄,上地幔上部有一个软流层,整个地壳就仿佛漂浮在上面。地震通常发生在地壳之中,岩浆则来源于软流层。 地幔和地核属于地球内部圈层,地核主要由金属铁和镍构成,外地核是液态金属,内地核则是固态金属。地壳与地幔的交界地带,温度大约在1000摄氏度左右;地幔与地核的交界地带,温度大约在4000摄氏度左右;内地核的温度则与太阳表面的温度相当,核心处的温度可能高达6800摄氏度。地球内部温度虽然随着深度的增加而增加,但并不是呈线性增长。 地球内部有源源不断的热源 地球表面平均温度大约15摄氏度,主要受太阳辐射影响。而在不见天日的地下,高温则来源于地下热源,并且温度会随着深度的增加而增加。 地球内部的热量有三个来源: 1.地球诞生之初的残余热量。 地球是由岩石碎片在引力的作用下形成的,这些岩石碎片不断的碰撞并聚集,动能转变为内能。因此,在地球诞生之初,不仅内部,整个地球表面也都处于熔融状态。经过长时间的冷却,地表的热量以辐射的方式散发到太空中,地球表面才逐渐冷却变硬,然后才有了海洋和生命。目前,这部分热能仅占很少一部分。 2.地球内部放射性元素衰变后产生的热量。 地球诞生之初,大量放射性元素沉积到地球内部,现在主要是铀-238、铀-235、钍-232和钾-40等放射性元素。这些放射性元素衰变后会释放热量,然后聚集在地球内部。旅行者号探测器就是利用放射性元素衰变产生的能量供电,一块电池就可以使用好几十年。铀238的半衰期为44.7亿年,钍232的半衰期为141亿年,这些放射性元素都能源源不断地给地球提供热能。 3.太阳月亮等天体的潮汐力导致的摩擦生热。 天体之间存在引力,而太阳和月亮的引力能够使地球发生形变,当它们之间相互运动时,地球内部的物质会发生相对运动,摩擦能够生热,这也能为地球内部提供热能。 木卫二就是一个很好的例子,木卫二主要由冰构成,木星及其卫星的潮汐力产生的热能使得木卫二的冰层下面存在液态海洋。 正是有这三种热源,即使地球不断由内向外散热,内部依然能够保持高温,而且地球外层岩石也足够保温。 地球内部能够长期保持高温,还在于散热速度慢 即便是滚烫的热油,长时间不加热,随着热量的流失也会冷却。如果把热油放进保温瓶中,则可以减缓油的降温速度。 地球内部这么热,除了热源,还与散热速度有关。地球内部处于高温高压状态,动辄上千摄氏度,而地球表面的温度却很低,这说明地球外层起到了一个很好的保温作用。同时,太阳的辐射热量也很难从地表传递到地球内部。 热量传递的方式有三种,分为热对流、热传导、热辐射。热对流主要发生在流体中,热传导主要发生在固体中,热辐射则是无接触的电磁辐射传热。地球悬浮在太空中,而太空几乎是真空,那么地球向外界传递热量的主要方式就是热辐射。此外,地球内部的热传递也很缓慢;虽然地球内部存在液态物质,但是在高压之下,热对流也十分缓慢。 地球内部本身就有热源,再加上地球外部圈层的保温作用,基本达到了一个热平衡状态,使地球内部在几十亿年之后仍然能够保持较高的温度。 5000多摄氏度下,地核物质为什么仍然能够以固态形式存在? 太阳是一个大火球,更准确来说是一个等离子体。太阳核心处的温度高达1500万摄氏度,而太阳表面温度约为5500摄氏度。等离子体简单来说就是离子化的气体,给气态物质继续加热升温,就会发生电离,继而产生等离子体。我们看到的闪电就是等离子体。 地球核心处的温度高达5000~6000摄氏度,这足够融化目前已知的所有物质。内地核依然能够保持固态,能够达到这么高的温度,都是超高压的杰作。 在标准大气压下,如果把气态氧气压缩成液氧,它的温度将会降至零下183摄氏度以下;继续加压,液氧将会变成固态氧,温度也会变得更低。而在绝热条件下,也就是没有与外界进行热交换的情况下,给液体加压,液体不仅会变为固态,温度还会升高。内燃机在压缩冲程时就用了这个原理进行点火。 地球内部就好似一个绝热体系,随着压力的增加,温度变得越来越高,也就很好理解了。地核主要由铁和镍构成,它们的熔点和沸点本来就高。在6000摄氏度的高温条件下,由于是超高压环境,物质依然保持固态也就不奇怪了。此时,物质的密度必然很高。 如果地球内部完全冷却,生命将不复存在 短期来看,发热与散热平衡,地球内部依然保持恒温状态;但是长期来看,从地球诞生那一刻,降温就是地球内部温度变化的长期趋势。忽略太阳的影响,再过数十亿年,地球内部的温度必然比现在低。 如果地球内部逐渐冷却,地壳运动将会变缓,火山将会逐渐变成死火山,这意味着火山和地震爆发的频率将会降低。随着外地核冷却,地球磁场也将会变弱。在太阳风的吹拂下,地球大气层会越来越薄、直至消失,地球上的水也会缓慢流失到太空中去,这将会威胁到地球上的生命。 火星就是一个很好的例子。火星质量仅为地球质量的14%,但是很多方面跟地球很像。NASA的好几个火星探测车已经在火星上探索了20来年,发现火星上曾经也存在大量的液态水和浓厚的大气。火星由于内部热量散失的较快,又没有太多热源补充,导致内核冷却、磁场变弱。太阳系最大的火山“奥林匹斯山”就位于火星,如今已是死火山。在太阳风的作用下,火星上很大一部分水和大气都逃逸到太空中去了。当然,这和火星质量太小也有关系,火星引力的束缚力度比较弱。现阶段来看,就算几十亿年后太阳衰老变成白矮星,地球内部也不会完全冷却,完全没必要担忧。 (转载自公众号艾牛科普君)

(来源于国家能源局网站) 6月15日,国家能源局发布1~5月全社会用电量等数据。  1~5月,全社会用电量累计33526亿千瓦时,同比增长2.5%。分产业看,第一产业用电量408亿千瓦时,同比增长9.8%;第二产业用电量22466亿千瓦时,同比增长1.4%;第三产业用电量5586亿千瓦时,同比增长1.6%;城乡居民生活用电量5066亿千瓦时,同比增长8.1%。  5月份,全社会用电量6716亿千瓦时,同比下降1.3%,日均用电量环比增长2.2%。分产业看,第一产业用电量88亿千瓦时,同比增长6.3%;第二产业用电量4754亿千瓦时,同比下降0.5%;第三产业用电量1057亿千瓦时,同比下降4.4%;城乡居民生活用电量817亿千瓦时,同比下降2.4%。

(来源于国家能源局网站) 据行业最新统计,截至5月底,我国可再生能源发电总装机达到11亿千瓦,同比增长15.1%;其中,常规水电3.6亿千瓦、抽水蓄能0.4亿千瓦,风电、光伏发电、生物质发电等新能源发电装机突破7亿千瓦。  1-5月,全国可再生能源发电新增装机4349万千瓦,占全国发电新增装机的82.1%,已成为我国发电新增装机的主体。  1-5月,全国可再生能源发电量达到1.06万亿千瓦时,同比增长16.8%,约占全社会用电量的31.5%。